EEG signals classification using the K-means clustering and a multilayer perceptron neural network model

نویسندگان

  • Umut Orhan
  • Mahmut Hekim
  • Mahmut Ozer
چکیده

0957-4174/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.eswa.2011.04.149 ⇑ Corresponding author. Address: Department o Engineering, Zonguldak Karaelmas University, Engine dak, Turkey. Tel.: +90 372 257 5446; fax: +90 372 25 E-mail address: [email protected] (M We introduced a multilayer perceptron neural network (MLPNN) based classification model as a diagnostic decision support mechanism in the epilepsy treatment. EEG signals were decomposed into frequency sub-bands using discrete wavelet transform (DWT). The wavelet coefficients were clustered using the K-means algorithm for each frequency sub-band. The probability distributions were computed according to distribution of wavelet coefficients to the clusters, and then used as inputs to the MLPNN model. We conducted five different experiments to evaluate the performance of the proposed model in the classifications of different mixtures of healthy segments, epileptic seizure free segments and epileptic seizure segments. We showed that the proposed model resulted in satisfactory classification accuracy rates. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

ANN-based classification of EEG signals using the average power based on rectangle approximation window

In this study, EEG signals were classified by using the average powers extracted by means of the rectangle approximation window based average power method from the power spectral densities of frequency sub-bands of the signals and two different artificial neural networks (ANNs) which are adaptive neuro-fuzzy inference system (ANFIS) and multilayer perceptron neural network (MLPNN). In order to ...

متن کامل

Classiication of Electroencephalogram Using Artiicial Neural Networks

In this paper, we will consider the problem of classifying electroencephalogram (EEG) signals of normal subjects, and subjects suuering from psychiatric disorder, e.g., obsessive compulsive disorder, schizophrenia, using a class of artiicial neural networks, viz., multi-layer perceptron. It is shown that the multilayer perceptron is capable of classifying unseen test EEG signals to a high degre...

متن کامل

Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011